首页 > 旅游问答

中国现在哪些大学有冷冻电镜-中国在冷冻电镜上大有希望吗?

中国现在哪些大学有冷冻电镜-中国在冷冻电镜上大有希望吗?

清华大学团5年大事纪各板块标语

施先生自称“放弃了普林斯顿大学和HHMI的优厚待遇“回国,可是他回国的待遇是年薪170万RMB,远高于美国时的待遇。施先生花了2亿RMB给自己实验室买了4台冷冻电镜,现在成了世界上冷冻电镜最多的实验室,美国可给不出那么多钱来给施先生。请问这是”放弃优厚待遇“么?

中国在冷冻电镜上大有希望吗?

北京时间10月4日17时45分,2017年诺贝尔化学奖公布。

瑞士洛桑大学雅克·杜波切特(Jacques Dubochet)、美国哥伦比亚大学乔基姆·弗兰克(Joachim Frank)和英国剑桥大学理查德·亨德森(Richard Henderson)凭借“研发出能确定溶液中生物分子高分辨率结构的冷冻电子显微镜”获此殊荣。

听得消息后,清华大学生命科学学院院长王宏伟和中国科学院生物物理研究所孙飞研究员都表示——“不意外”。

1、获诺奖并不等于很完美

“前两年就觉得这项技术可以获诺贝尔奖。”孙飞长期从事生物电镜方法学研究,他也是中国生物物理学学会冷冻电镜分会副理事长。

孙飞与三位诺奖获得者虽没有直接合作,但都有过接触。

他在接受采访时介绍,雅克·杜波切特、乔基姆·弗兰克和理查德·亨德森开创的冷冻电子显微成像技术,能让科学家看到生物大分子复合体的高分辨率三维结构,极大地推进了分子生物学研究和对生物奥秘的理解。

值得注意的是,三位科学家的主要工作都是在上世纪七十年代到八十年代做出来的。时间证明了他们的远见。

资料图

图为质多角体病毒CPV的冷冻电镜图像(左上)和质型多角体病毒衣壳三维重构(中)。重构结果中彩色部分为组成该病毒的最基本的非对称结构单元。右图展示该非对称单元的放大图(右上)以及构建的原子模型(右下)。左下图展示的是部分氨基酸的三维重构电子密度图以及构建的原子模型,可以很清楚地看见氨基酸侧链。

孙飞告诉记者,结构生物学领域科学家在大量使用冷冻电子显微成像这项技术。目前该领域最前沿研究方向是进一步改进技术方法,特别是冷冻样品制备方面,进一步提高冷冻电子显微镜的分辨率和技术流程通量。这些方面取得突破后,将使该技术广泛应用于医药开发领域。

“获得诺奖并不表示这项技术已经非常完善。”王宏伟也表示,未来冷冻电子显微成像技术还需要很长的路要走。

王宏伟认为,它需要生物学家、物理学家、计算机学家在方法学上进一步创新,尤其在解析细胞内精细结构和生物大分子的结构变化方面进一步提升。

“虽然是物理学的技术,但给生物物理学打开了新的天地,影响不可估量。”孙飞评价。

耐人寻味的是,这并不是显微成像技术第一次获此殊荣。超分辨率荧光显微技术就曾摘得2014年诺贝尔化学奖。

2、国内应用并不落后

令人欣慰的是,我国在冷冻电子显微镜领域并不落后。

王宏伟介绍,国内最早做冷冻电镜是从上世纪九十年代中期开始。当时清华大学隋森芳院士、中山大学张景强教授、中科院生物物理所徐伟研究员等都在做这方面研究。

到二十一世纪初,冷冻电子显微镜技术逐渐成熟,中国一些科研单位开始布局。

王宏伟告诉记者,2008年清华大学施一公教授购置了亚洲第一台高端冷冻电子显微镜,北京大学医学院、中科院生物物理所也开始采购该设备。此外,国内还从国际上招聘年轻科学家开始这方面研究。

图为施一公教授。

“从2007到2009年,国内开始在此领域有较大投入并加强人才队伍建设。国内大部分从事该领域研究的年轻人与此次三位获奖者有一定的师承关系。” 王宏伟认为,中国那时候开始布局冷冻电子显微镜技术正当其时,因为2013年软硬件的成熟使该技术开始显现出优势。

孙飞告诉记者,施一公教授关于剪切复合体的大量研究都是利用这一技术,中国科学院生物物理所关于植物捕光复合体的高分辨率结构也是利用该技术来完成。

“所以这项技术会促成一大批突出研究成果出现。”孙飞说。

目前,中国在解析大生物分子结构领域的研究非常出色,冷冻电子显微镜技术应用方面在国际上也很有影响力。

但在王宏伟看来,国内在该技术方法学开发方面还需加大力气,今年的诺贝尔化学奖获得者就是在方法学开发上作出了原创性成果。

众所周知,X射线晶体学技术带来的重要发现曾多次获诺奖,冷冻电子显微镜技术是否有同样可能?

“这次诺奖是奖励冷冻电子显微镜方法学上的创新,将来利用这个技术解析出重要分子结构,破解重要生物学问题,完全有可能再得诺奖,中国在这方面也大有希望。”王宏伟说。

中国技术不落后于别国,相信会越来越强大!

2017年度十大科学突破有哪些?

在2017年即将过去的时候,让我们用倒数的方式,回顾这一年中最振奋人心的Top10科学突破,一起期待新一年科学将带来的惊喜与希望。

10

冷冻电镜标志年

科技让人类看到前所未见的生命过程

冷冻电镜技术,我们能看到的微观世界从图片左侧这样,变成了右侧这样。

10月4日,诺贝尔化学奖揭晓。来自瑞士、美国和英国的三位科学家因“研发出冷冻电子显微技术用于溶液中生物分子结构的高分辨测定”获得诺贝尔化学奖,2017年成为冷冻电镜技术的重要一年。

图像是理解问题的关键,人类理解事物主要依靠通过各种手段去“看”它们。过去,电子显微技术被认为只适合观测部分物质,因为高强度的电子束会摧毁大量表面敏感的材料,导致其图像模糊。然而冷冻电镜的出现打破了桎梏,通过冷冻手段抑制生物大分子的运动,科学家们开始看到此前从未见过的生物过程。三位科学家对冷冻电镜做出了一系列开创性的工作。诸如对模糊图像进行处理合并的算法、在高真空下通过低温使水玻璃化等一系列手段,使得冷冻电镜最终能够实现原子级别的分辨率。此后,人类终于得以一窥作为生命基础的分子机器的真实面目。

冷冻电镜的发展给生物化学、材料化学等领域带来了全新的工具,科学家们得以深入过去无法涉足的领域,观测生物大分子、敏感电池材料等表面发生的具体过程,结构生物学等领域得以不断涌现出大量突破性成果。

新科诺奖:在这个前所未有的高清世界里,看见生命的细节

冷冻电镜牛X在哪里?5位科学家说:它彻底“消灭”了结构生物学

9

卡西尼坠毁

坦然走向死亡的老战士

9月15日,经过了漫长的旅程之后,卡西尼号终于和人类告别,永远地消失在了土星大气层中。

自1997年发射至今,卡西尼号已经在广袤的太空中流浪了20年。20年前,卡西尼借助引力弹弓,掠过了金星、太阳、地球和木星,在经过6年8个月、长达35亿千米的太空旅行后,顺利进入环绕土星转动的轨道,并将惠更斯号带到了土卫六。在这20年里,卡西尼将39万张珍贵的天文图片传给人类,为今后几十年的科学研究提供了素材。它让人类重新认识了土星及其卫星,也使人类在行星科学、生命起源等方面前进了一大步。

然而所有的开始终究都会结束。在完成了最后一次与土卫六泰坦的近距离约会后,她踏上了最后22圈环绕土星的旅程,并最终向土星大气层俯冲而去,燃烧殆尽。

如今她已安息,在遥远的土星。

地球啊,请别为我哭泣:卡西尼号焚毁前最后的22圈

一位老战士最后的冲锋:看,那是卡西尼号的一生

8

人造子宫:

早产儿救治的新希望

早产是新生儿死亡和致残的重要病因,也是无数人不懈钻研的课题。然而目前的医学水平对于早产儿的救治手段,还停留在从源头监控与针对相应器官不足采取治疗措施两个方面。然而,这些治疗手段作为出生后的补救措施,不仅不能媲美成熟器官的功能,还常常会顾此失彼,在解决需求的同时带来不小的副作用。延长胎龄成为了早产儿救治的重要砝码,人造子宫也成为科学家们探索的焦点。

4月,美国费城儿童医院的胎儿外科医生在《自然-通讯》(Nature Communication)上发表了他们的研究成果:通过体外模拟子宫的环境,成功使相当于23-24周人类胎儿大小的羔羊宝宝在母体外生存了670小时,并实现了胎儿在母体环境中一样的正常发育。

虽然从羊过渡到人类胎儿仍有不小的距离,但这项研究已经在模拟成熟器官功能、预防早产和治疗早产儿方面迈出了一大步。

人造子宫滋养了早产的羔羊,也将庇护人类的婴儿

7

最古老人类化石和新种大猿:

人类对祖先和近亲演化的探索

无论是对历史的追溯还是对新物种的发现,2017年,人类还在不断探寻着自己和近亲的演化本源。

6月,在摩洛哥发现了目前已知最古老智人化石。这批在杰贝尔依罗发现的化石测年结果为30万年,是目前我们已知的拥有精确定年的智人在非洲最早期演化的证据。通过对头骨化石的分析,科学家发现了其具有进步与原始特征共存的镶嵌现象,虽然这些古人类拥有较为现代的面部形态,颅内模的形态虽然较为原始,但与中更新世古老型人类又不完全相同。此外,化石发掘于北非这一特殊地理位置,也证明了智人在非洲大陆上演化的复杂性。

11月,人类发现了新的近亲:达巴奴里猩猩(Pongo tapanuliensis)。这个在印尼北苏门答腊省达巴奴里被发现的红毛猩猩,是自1929年以来人类首次发现的新种大猿,自此,现生人科物种增加到了8种。此前,科学家们一直把他们当中是苏门答腊猩猩(P. abelii)的一个种群,然而在大规模的研究后,人们发现达巴奴里猩猩的颅骨、牙齿、下颌和其他猩猩有显著区别,毛发更卷,胡子更长,基因也有显著差异,应该独立成种。这种濒危的物种使科学家重新思考了猩猩属的演化轨迹,并思考如何区分物种,制定保护政策,保护古老而特殊的生物类群。

我们又发现了新的人类亲戚,但它们已经快要消失了

6

时间晶体:打破时间的限制

2012年,诺贝尔物理学奖得主维尔切克(Frank Wilczek)提出了一个疯狂的想法:时间晶体。时间晶体的神奇之处在于,降温后它能在时间上自发地出现周期性的运动,从而打破时间平移对称性。如果我们把空间晶体和时间晶体的概念综合起来,就会得到一种特殊的物质,可以同时在四维时空中结晶,形成所谓的时间-空间晶体。在维尔切克的设想中,未来会有一天,人类可以对时空晶体进行编程,把大脑意识上传到“时空晶体”中,做成时光胶囊。即使地老天荒,即使宇宙热寂,那些美妙的情感仍旧永存。

时间晶体引发了广泛的争议,很多人认为它是不可能做到的。但终于还是有人做出来了。

今年3月,美国哈佛大学和马里兰大学两个实验组在《自然》(Nature)上发表两篇论文,宣布基于金刚石色心和离子阱系统,在实验中验证了离散时间晶体的存在。实验的成功促使人们在各种物理模型中,研究离散时间晶体,乃至时间准晶体。

未来是否还会出现时间玻璃态?谁知道呢,我们期待大自然带来的惊喜。

法医秦明、杨永信和泳池里的尿:菠萝科学奖颁给了他们!

5

针对基因的疗法:

CRISPR-Cas9为医学带来新希望

今年,科学家不断探索着基因治疗的可能性。

7月,中国的科学家们意外地发现了通过DNA靶向编辑 CRISPR-Cas9技术治疗染色体遗传病的可能。研究团队发现,利用Y染色体敲除实验的方法,设计专门针对21号染色体的特定CRISPR靶向系统,可以在体外细胞实验中实现多余21号染色体的精确敲除。这项研究首次为唐氏综合征的治疗提供了希望。

我的小鼠怎么“变性”了?!一场意外,竟给唐氏患儿带来希望

11月,来自德国和意大利的研究人员在《自然》(Nature)杂志发表了一篇利用基因编辑技术治疗单基因遗传病的文章。文章中涉及的病例是一位罹患交界型大疱性表皮松解症(JEB)的男孩,由于LAMB3基因的突变,患者的皮肤会经历频发性的破损、感染以及糜烂,导致患者处于长期的疼痛之中。研究者们通过逆转录病毒结合CRISPR-Cas9技术将完好的LAMB3基因成功地导入患者皮肤细胞,插入细胞的基因组中修复突变的LAMB3基因,治愈了患者。而在此前,这种罕见遗传疾病并没有有效的治疗方法,40%的患者甚至会在青春期前死亡。

这个失去皮肤、浑身血红的“蝴蝶男孩”,竟然活下来了

在其他研究中,CRISPR-Cas9技术对遗传性心脏病、I型脊髓型肌肉萎缩症等疾病的治疗与治愈也起到了极大的推进作用。CRISPR-Cas9及其相关应用自从面世以来已经连续三年上榜“年度十大科学突破”,这种源自细菌的基因编辑技术究竟还有多少潜力,让我们拭目以待。

4

人工合成酵母基因组:

生命的了解再进一步

3月,《科学》(Science)杂志以专刊的形式介绍了世界上首例人造酵母合成项目的进展。人造酵母项目是深化生命科学研究进展、应用生命科学研究成果的重要一步,通过对比人造酵母与天然酵母的区别,科学家们可以更加准确地了解生命的运作方式,操控生命活动。

目前为止,科学家们一共合成了酵母16对目标染色体中的6对半。这并不是个简单的数字:人工化学合成的DNA一直面临着成本高、错误多的问题,合成染色体长度的DNA极具挑战性。在酵母DNA合成的研究中,科学家们通过合成寡核苷酸链(即短的DNA链)再拼接的方式,终于得到了全长的酵母染色体。从合成最简单的病毒、支原体开始,直到合成单细胞真核生物酵母菌,科学家们逐步攻克了基因大小与基因复杂程度上的障碍,为后续合成更加复杂的生命提供了可能。

3

量子技术爆发:

通信和计算领域的高速发展

量子技术经过实验室中的漫长发展,在今年迎来了爆发期。

1月,世界上第一颗量子通信卫星“墨子号”正式交付开展科学实验。“墨子号”不仅在国际上率先实现了千公里级星地双向量子纠缠分发和量子力学非定域性检验,更在国际上首次成功实现了从卫星到地面的量子密钥分发和从地面到卫星的量子隐形传态,圆满实现了全部三大既定科学目标。量子密钥是目前人类唯一已知的不可窃听、不可破译的无条件安全的通信方式。“墨子号”的成功,为构建覆盖全球的量子保密通信网络、开展空间尺度量子通信网络研究、空间量子物理学和量子引力实验检验等研究奠定了可靠的技术基础;同时,也为中国在未来继续引领世界量子通信技术发展和空间尺度量子物理基本问题检验前沿研究奠定了科学与技术基础。

5月,中国科学院在上海召开新闻发布会,宣布世界首台超越早期经典计算机的光量子计算机诞生。IBM于同月发布了17量子比特位的处理器,又在11月宣布了20量子位的量子计算机问世,并构建了50量子比特的量子计算机原理样机,在科学界引起了轩然大波。

量子科学的征途任重道远,科学将全力以赴,上下求索。

墨子号成功上天!关于量子通讯卫星,你需要知道这5件事

2

AI技术节节开花:

人工智能带来的变化和挑战

3月,人工智能Libratus在宾夕法尼亚州挑战美国顶尖德州扑克游戏玩家,在12万手比赛后,Libratus完胜全部4个对手。Libratus使用的“强化学习”方式能让计算机生成更具创造性的策略,在信息不完全的情况下作出更好的决策。

5月,强化版围棋人工智能AlphaGo在中国乌镇3:0战胜世界第一棋手柯洁,并与八段棋手协同作战在组队战中全胜5位顶尖九段棋手。

10月,横空出世的AlphaGo Zero仅通过40天的学习就战胜了自己的双胞胎兄弟AlphaGo Master。AlphaGo Zero采用无监督学习,从零开始,不需要任何人类的经验,并通过强化学习发现了新的围棋定式。AlphaGo Zero还优化了核心算法,将策略网络和值网络结合,并引入深度残差网络,用更少的算力得到了更好的结果。

随着技术的发展,人工智能的时代已经到来。除了扑克和围棋,人工智能将会更加深入我们的生活,为人类社会带来新的变化和挑战。

碾压全网的神秘“Master”,原来就是AlphaGo!

柯洁对战AlphaGo,首战告负!6个问题,带你弄清这只“狗”

还记得那个横扫围棋界的AI“阿法狗”吗?现在,它输了……

1

双中子星并合引力波探测:

开启多信使天文学时代

8月17日,从遥远太空传来的短短一瞬的信号,沸腾了整个天文界;10月16日,全球数十家天文机构同时宣布了一个“前所未有”的重大消息:人类第一次探测到双中子星并合产生的引力波信号。这个信号,让世界各地的望远镜指向了同一个方向,也让全球天文学家空前联手。

与黑洞不同,双中子星的并合不但会产生引力波,而且还会抛射物质并产生各种电磁信号,让我们能够“看”到。此前,科学家虽然曾4测探测到引力波,但由于黑洞的并合不会有任何电磁波辐射,人类只能“听”到。而双子星并合事件,则意味着人类首次同时“看到”并“听到”来自宇宙的信号,是一场宇宙展现在人类面前的视听盛宴。

双子星并合引力波的成功探测,开启了多信使天文学的时代,在天文学以及物理学发展史上具有划时代的意义。在某种程度上,它的意义可以与第一次探测到引力波相提并论。在未来,随着对双中子星并合现象研究的深入,我们对宇宙的了解将翻开新的一页。

有没有综述性的文章,介绍扫描电镜,场发射显微镜,原子力显微镜等

电子显微镜技术发展综述

摘要:本文论述了电子显微镜的发展现状及历史,介绍了目前较为先进的数种电子显微镜的结构、原理以及其在生物学领域的应用情况,并对其在组织学研究中的应用进行探讨。 关键词:电子显微镜;组织学研究 引言:显微技术是一门对于物质微小区域进行化学成分分析、显微形貌观察、微观结构测定的一门专门的显微分析技术。20世纪30年代,透射电子显微镜(TEM)的发明标志着电子显微技术的诞生,人们可以进一步地研究物质的超微结构。电子显微技术在普通光学显微技术基础上进一步拓宽了人们的观测视野,在各个领域发挥了重要的作用,被广泛应用于科学领域。在生物学研究领域,电子显微技术推进了组织学,细胞生物学,分子生物学等学科的发展,因而具有不可替代的崇高地位。

一、电子显微镜技术

1.1电子显微镜的定义与组成 电子显微镜,简称电镜,是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器[1]电子显微镜由镜筒、真空装置和电源柜三部分组成。镜筒主要有电子源、电子透镜、样品架、荧光屏和探测器等部件,这些部件通常是自上而下地装配成一个柱体。①电子透镜:用来聚焦电子,是电子显微镜镜筒中最重要的部件。一般使用的是磁透镜,有时也有使用静电透镜的。它用一个对称于镜筒轴线的空间电场或磁场使电子轨迹向轴线弯曲形成聚焦,其作用与光学显微镜中的光学透镜(凸透镜)使光束聚焦的作用是一样的,所以称为电子透镜。光学透镜的焦点是固定的,而电子透镜的焦点可以被调节,因此电子显微镜不象光学显微镜那样有可以移动的透镜系统。现代电子显微镜大多采用电磁透镜,由很稳定的直流励磁电流通过带极靴的线圈产生的强磁场使电子聚焦。②电子源:是一个释放自由电子的阴极,栅极,一个环状加速电子的阳极构成的。阴极和阳极之间的电压差必须非常高,一般在数千伏到3百万伏之间。它能发射并形成速度均匀的电子束,所以加速电压的稳定度要求不低于万分之一。③样品架:样品可以稳定地放在样品架上。此外往往还有可以用来改变样品(如移动、转动、加热、降温、拉长等)的装置。④探测器:用来收集电子的信号或次级信号。

1.2基本原理 不同类型的电子显微镜成像原理各有差异,但均是利用电磁场来偏转、聚焦电子束,再依据电子与物质作用的原理来研究物质的构造。其中透射式电子显微镜产生的电子束经聚光镜会聚后均匀照射到试样上的待观察区域,入射电子与试样物质相互作用,由于试样很薄,绝大部分电子穿透试样,其强度分布与所观察试样区的形貌、组织、结构一一对应。投射出试样的电子经三级磁透镜放大投射在观察图形的荧光屏上,荧光屏将电子强度分布转化为人眼可见的光强分布,于是在荧光屏上显出与试样形貌、组织、结构相应的图像。扫描电子显微镜(SEM)是聚焦电子束在线圈驱动下对试样表面逐点栅网式扫描成像,成像信号为二次电子、背散射电子或吸收电子。二次电子信号被探测器收集转换成电讯号,经处理后得到反应试样表面形貌的二次电子像。背散射电子成像反映样品的元素分布,及不同相成分区域的轮廓。此外由于电子的德布罗意波长较短,分辨率比光学显微镜高的很多,可以达到0.1~0.2nm,放大倍数从几万到百万倍。

1.3技术发展史 世界上第一台电子显微镜(透射式电子显微镜(TEM))由德国科学家Ruska和Knoll于1931年研制成功。二战后,Ruska继续对TEM进行研究改进,并制造出了放大倍数在10万倍以上的显微镜,并因此获得了诺贝尔物理学奖。在TEM的基础上,英国工程师Charles于1952年发明了世界上第一台扫描电子显微镜(SEM)。扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察,因而在设计上突出了景深效果,一般用来分析断口以及未经人工处理的自然表面;而透射电镜则突出的是高分辨率,使用透射电镜观察样品能获得高分辨率的超微结构图像,在材料科学和生物学上应用较多,同时也是病理学上的诊断工具,该技术的关键是超薄切片的制备。在这以后场发射扫描电子显微镜(FE-SEM)、场离子显微镜(FIM)、低能电子衍射(LEED)、俄歇谱仪(AES)、光电子能谱(ESCA)等相继诞生,在各科学领域的研究中起重要作用。 1981年G.Binnig和H.Rohrer成功研制了世界上第一台扫描隧道显微镜(STM),并因此获得诺贝尔物理奖.它的出现,使人类第一次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关的物理、化学性质,被国际科学界公认为80年代世界十大科技成就之一。扫描隧道显微镜(STM)是利用导体针尖与样品之间的隧道电流,并用精密压电晶体控制导体针尖沿样品表面扫描,从而能以原子尺度记录样品表面形貌的新型仪器.其分辨率已达到1nm~2nm,用它可研究各种金属、半导体和生物样品的表面形貌,也可研究表面沉积、表面原子扩散、表面粒子的成核和生长,吸附和脱附等。 在STM出现以后,又陆续发展了一系列工作原理相似的新型显微技术,包括原子力显微镜(AFM)、横向力显微镜(LFM)等,这类基于探针对被测样品进行扫描成像的显微镜统称为扫描探针显微镜(SPM)。扫描探针显微镜是纳米测量学、纳米表征与测量方法中最重要最基本的手段。它能以原子级的探针和被测样品表面作为工作的主要元件,在X和y两个方向上完成探针与样品之间的扫描,同时在Z方向的升降来模拟样品表面的起伏。用探针与样品间的相互作用所产生的物理量的数值随样品表面起伏的变化来达到观察样品表面形貌的目的。这种仪器分辨率高,横向分辨率可达0.1nm,纵向分辨率可达0.01nm,可以直接观察测定样品的三维图像,可以在大气、真空甚至液体中,在高温或低温下进行观测。检测时可以不与样品接触,故不会损伤样品,也不需要电子束照射,因而不会对样品造成辐射损伤。

二、我国电子显微镜技术的发展 1958年,我国成功地研制了第一台电子显微镜,1988年中国科学院白春礼和 姚俊恩研制出了我国的第一台STM。[2] 2000年,中国电子显微镜学会统计中国大陆保有量不到2000台,中国加入WTO后,经济大发展,科研教育以及产业构都在升级目前,我国电子显微镜市场每年以近百套的数量在增长,可以预期,在未来数年内中国电子显微镜市场容量将居世界首位。 中国市场的电子显微镜,日本电子的市场占有率超过50%,排在首位。紧随其后的是FEI(原飞利浦电镜部)、日本日立(天美代理)、德国Carl Zeiss(原德国LEO)和日本岛津。而在国产厂家方面,主要是中科科仪、南京江南光电和上海电子光学技术研究所,产品主要集中在低端的扫描电子显微镜市场。就市场总体情况而言,国产电镜国内市场占有率不足10%。由此可见我国国产电子显微镜还有较大幅度的提升空间。从种类上看扫描电镜占目前中国电子显微镜总保有量的63.61%,透射电镜则为36.39%,可见扫描电镜在我国有着更为广泛的用户基础。[3]

三、电子显微镜技术的未来发展趋势

3.1远程电子显微镜技术 自上世纪九十年代以来,随着计算机技术和网络技术的发展,远程电子显微镜逐渐出现,它可以将实验室现场获得的实时信息展现给远端用户,使其可以通过互联网实时观看样品图像,并远程操作仪器来完成实验。[4] 远程电子显微镜技术的关键在于图像的采集、压缩和传输。在图像采集方面,现在的电子显微镜已经有了长足的进步。老式的电子显微镜多采用数码相机和视频采集卡来采集图像,新式电子显微镜多采用VGA采集卡进行图像采集并已成为未来发展趋势。此外运用软件来采集图像的新方式也逐渐出现。早期,图像的压缩使用的是JPEG图像压缩法,即远端用户所见的是一系列独立的静态样品图像。现在,随着技术的发展,MPEG4和H.264等视频压缩算法被逐渐运用到了样品图像的压缩。现在,样品图像的传输主要通过TCP协议和UDP协议,但其占用带宽过大,传输效果并不理想。为了改善传输性能,专门的数据传输系统“金字塔”式网络传输模型以及专有传输网络正在研究之中,同时这也是现阶段远程电子显微镜的改进方向。 1990年,Carl Zmola等人实现了对SEM的样品图像网络传输,首次建立了远程电镜的样品图像实时传输系统。随后,美国各大学相继建立了各自的SEM远程系统。样品传输的效能也有了长足进步,最初,在800Mb的光纤网络中,样品图像的传输效能是每17秒传送1帧。到了2000年,在1~2Mb的网络中,样品图像的传输可以达到每秒传送5帧。在技术上尚有很大程度的提升空间。 在中国,尽管各大院校及研究机构中有数千台电子显微镜,但仍不能满足日益增长的应用需求,因此远程电子显微镜技术的研究对于中国是很有应用价值的。

3.2低温电子显微镜技术 低温电子显微镜技术是应用冷冻(物理)方法制备生物样品并进行观察的技术,因而在生物学组织学中的应用较为广泛。与常规电镜技术(化学方法)相比较,其可最大程度地维持样品在生活时的生理状态,可运用于生物大分子的动态过程研究以及细胞核组织的三维结构分析。

3.3低温电镜下的三维重构技术 电子显微镜的三维成像技术是电子显微和计算机完美结合的产物,它利用电子显微镜收集样品的二维投影图像,经过计算机处理重构出样品的三维空间结构。三维成像技术在生物学领域的应用十分广泛,尤其体现在对蛋白质的三维结构分析上。早期的三维成像技术主要使用重金属盐溶液对样品进行染

本文来自投稿,不代表本网站立场,发布者:实习编辑,如若转载,请注明出处:https://www.apw365.com/wenda/7710.html

关注微信